Revisión sistemática de taxonomías de riesgos asociados a la Inteligencia Artificial
Contenido principal del artículo
Resumen
Este artículo realiza una revisión sistemática de treinta y seis taxonomías de riesgos asociados a la Inteligencia Artificial (IA) que se han realizado desde el 2010 hasta la fecha, utilizando como metodología el protocolo Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). El estudio se basa en la importancia de estas para estructurar la investigación de los riesgos y para distinguir y definir amenazas. Ello permite identificar las cuestiones que generan mayor preocupación y, por lo tanto, requieren mejor gobernanza. La investigación permite extraer tres conclusiones. En primer lugar, se observa que la mayoría de los estudios se centran en amenazas como la privacidad y la desinformación, posiblemente debido a su concreción y evidencia empírica existente. Por el contrario, amenazas como los ciberataques y el desarrollo de tecnologías estratégicas son menos citadas, a pesar de su creciente relevancia. En segundo lugar, encontramos que los artículos enfocados en el origen del riesgo tienden a considerar más frecuentemente riesgos extremos en comparación con los trabajos que abordan las consecuencias. Esto sugiere que la literatura ha sabido identificar las potenciales causas de una catástrofe, pero no las formas concretas en las que esta se puede materializar en la práctica. Finalmente, existe una cierta división entre aquellos artículos que tratan daños tangibles presentes y aquellos que cubren daños potenciales futuros. No obstante, varias amenazas se tratan en la mayoría de los artículos de todo el espectro indicando que existen puntos de unión entre clústeres.
Citas
Acemoglu, D. (2021). Harms of AI (Working Paper 29247). National Bureau of Economic Research. https://doi.org/10.3386/w29247
Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610-623. https://doi.org/10.1145/3442188.3445922
Blauth, T. F., Gstrein, O. J., & Zwitter, A. (2022). Artificial intelligence crime: An overview of malicious use and abuse of AI. IEEE Access, 10, 77110-77122.
https://ieeexplore.ieee.org/document/9831441
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... & Liang, P. (2021). On the opportunities and risks of foundation models. arXiv preprint arXiv: 2108.07258. https://doi.org/10.48550/arXiv.2108.07258
Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfinkel, B., ... & Amodei, D. (2018). The malicious use of artificial intelligence: Forecasting, prevention, and mitigation. arXiv preprint arXiv:1802.07228. https://doi.org/10.48550/arXiv.1802.07228
Buçinca, Z., Pham, C. M., Jakesch, M., Ribeiro, M. T., Olteanu, A., & Amershi, S. (2023). AHA!: Facilitating AI Impact Assessment by Generating Examples of Harms. arXiv preprint arXiv:2306.03280. https://doi.org/10.48550/arXiv.2306.03280
Bucknall, B. S., & Dori-Hacohen, S. (2022). Current and near-term AI as a potential existential risk factor. In Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society (pp. 119-129). https://doi.org/10.1145/3514094.3534146
CAIS (2023). Statement on AI Risk. Center of AI Safety. https://www.safe.ai/statement-on-ai-risk
Chan, A., Salganik, R., Markelius, A., Pang, C., Rajkumar, N., Krasheninnikov, D., Langosco, L., He, Z., Duan, Y., Carroll, M., Lin, M., Mayhew, A., Collins, K., Molamohammadi, M., Burden, J., Zhao, W., Rismani, S., Voudouris, K., Bhatt, U., … Maharaj, T. (2023). Harms from Increasingly Agentic Algorithmic Systems. In 2023 ACM Conference on Fairness, Accountability, and Transparency (pp.0 651-666). https://doi.org/10.1145/3593013.3594033
Clarke, S. & Whittlestone, J. (2022). A Survey of the Potential Long-term Impacts of AI. In Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society (pp. 192-202). https://doi.org/10.1145/3514094.3534131
Critch, A., & Russell, S. (2023). TASRA: A Taxonomy and Analysis of Societal-Scale Risks from AI. arXiv preprint arXiv:2306.06924. https://doi.org/10.48550/arXiv.2306.06924
Ganguli, D., Lovitt, L., Kernion, J., Askell, A., Bai, Y., Kadavath, S., ... & Clark, J. (2022). Red teaming language models to reduce harms: Methods, scaling behaviors, and lessons learned. arXiv preprint arXiv:2209.07858. https://n9.cl/u57rh
Garvey, C. (2018). AI Risk Mitigation Through Democratic Governance: Introducing the 7-Dimensional AI Risk Horizon. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (pp. 366-367). https://doi.org/10.1145/3278721.3278801
Guan, H., Dong, L., & Zhao, A. (2022). Ethical Risk Factors and Mechanisms in Artificial Intelligence Decision Making. Behavioral Sciences, 12(9), Article 9. https://doi.org/10.3390/bs12090343
Guembe, B., Azeta, A., Misra, S., Osamor, V. C., Fernandez-Sanz, L., & Pospelova, V. (2022). The Emerging Threat of Ai-driven Cyber Attacks: A Review. Applied Artificial Intelligence, 36(1), 2037254. https://doi.org/10.1080/08839514.2022.2037254
Hagerty, A. & Rubinov, I. (2019). Global AI ethics: a review of the social impacts and ethical implications of artificial intelligence. arXiv preprint arXiv:1907.07892. https://doi.org/10.48550/arXiv.1907.07892
Hazell, J. (2023). Large language models can be used to effectively scale spear phishing campaigns. arXiv preprint arXiv:2305.06972. https://n9.cl/siuce
Hendrycks, D., Mazeika, M., & Woodside, T. (2023). An Overview of Catastrophic AI Risks. arXiv preprint arXiv:2306.12001. https://doi.org/10.48550/arXiv.2306.12001
Kilian, K. A., Ventura, C. J., & Bailey, M. M. (2023). Examining the Differential Risk from High-level Artificial Intelligence and the Question of Control. Futures, 151, 103182. https://doi.org/10.1016/j.futures.2023.103182
Kirk, H. R., Vidgen, B., Röttger, P., & Hale, S. A. (2023). Personalisation within bounds: A risk taxonomy and policy framework for the alignment of large language models with personalised feedback. arXiv preprint arXiv:2303.05453. https://doi.org/10.48550/arXiv.2303.05453
Kuleshov, A., Ignatiev, A., & Abramova, A. (2021). The Deficiency of “Redline/Greenline” Approach to Risk Management in AI Applications. In 2021 International Conference Engineering Technologies and Computer Science (EnT) (pp. 49-55). https://doi.org/10.1109/EnT52731.2021.00015
Manheim, Karl M. and Kaplan, Lyric, Artificial Intelligence: Risks to Privacy and Democracy (October 25, 2018). 21 Yale Journal of Law and Technology 106 (2019), Loyola Law School, Los Angeles Legal Studies Research Paper No. 2018-37, Available at SSRN: https://ssrn.com/abstract=3273016
McLean, S., Gemma J. M. Read, Jason Thompson, Chris Baber, Neville A. Stanton & Paul M. Salmon (2023) The risks associated with Artificial General Intelligence: A systematic review. Journal of Experimental & Theoretical Artificial Intelligence, 35(5), 649-663. https://doi.org/10.1080/0952813X.2021.1964003
Meek, T., Barham, H., Beltaif, N., Kaadoor, A., & Akhter, T. (2016). Managing the ethical and risk implications of rapid advances in artificial intelligence: A literature review. In 2016 Portland International Conference on Management of Engineering and Technology (PICMET) (pp. 682-693). https://doi.org/10.1109/PICMET.2016.7806752
Müller, V. C. (2020). Ethics of Artificial Intelligence and Robotics. En E. Zalta (Ed.), Stanford Encyclopedia of Philosophy (pp. 1-70). CSLI, Stanford University.
O’Neill, M. & Connor, M. (2023). Amplifying Limitations, Harms and Risks of Large Language Models. arXiv. (arXiv:2307.04821). https://doi.org/10.48550/arXiv.2307.04821
OpenAI (2023, marzo 15). GPT-4 Technical Report. arXiv.Org. https://n9.cl/zfb8z
Page, J., Bain, M., & Mukhlish, F. (2018, August). The risks of low level narrow artificial intelligence. In 2018 IEEE international conference on intelligence and safety for robotics (ISR) (pp. 1-6). https://ieeexplore.ieee.org/document/8535903/
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 89. https://n9.cl/hgnin
Rajendra, P., Kumari, M., Rani, S., Dogra, N., Boadh, R., Kumar, A., & Dahiya, M. (2022). Impact of artificial intelligence on civilization: Future perspectives. Materials Today: Proceedings, 56, 252-256. https://doi.org/10.1016/j.matpr.2022.01.113
Scherer, M. U. (2015). Regulating Artificial Intelligence Systems: Risks, Challenges, Competencies, and Strategies (SSRN Scholarly Paper 2609777). https://n9.cl/muwp6
Shelby, R., Rismani, S., Henne, K., Moon, A., Rostamzadeh, N., Nicholas, P., ... & Virk, G. (2023). Sociotechnical harms of algorithmic systems: Scoping a taxonomy for harm reduction. In Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society (pp. 723-741). https://doi.org/10.48550/arXiv.2210.05791
Soice, E. H., Rocha, R., Cordova, K., Specter, M., & Esvelt, K. M. (2023). Can large language models democratize access to dual-use biotechnology? arXiv preprint ar- Xiv:2306.03809. https://arxiv.org/abs/2306.03809v1
Solaiman, I., Talat, Z., Agnew, W., Ahmad, L., Baker, D., Blodgett, S. L., ... & Vassilev, A. (2023). Evaluating the Social Impact of Generative AI Systems in Systems and Society. arXiv preprint arXiv:2306.05949. https://arxiv.org/abs/2306.05949v2
Strasser, A. (2023). On pitfalls (and advantages) of sophisticated large language models. arXiv preprint arXiv:2303.17511. https://doi.org/10.48550/arXiv.2303.17511
Tamkin, A., Brundage, M., Clark, J., & Ganguli, D. (2021). Understanding the capabilities, limitations, and societal impact of large language models. arXiv preprint ar-Xiv:2102.02503. https://doi.org/10.48550/arXiv.2102.02503
Turchin, A. & Denkenberger, D. (2020). Classification of global catastrophic risks connected with artificial intelligence. AI & Society, 35(1), 147-163. https://n9.cl/uob2z
Urbina, F., Lentzos, F., Invernizzi, C., & Ekins, S. (2022). Dual use of artificial-intelligence- powered drug discovery. Nature Machine Intelligence, 4(3), Article 3. https://doi.org/10.1038/s42256-022-00465-9
Vesnic-Alujevic, L., Nascimento, S., & Pólvora, A. (2020). Societal and ethical impacts of artificial intelligence: Critical notes on European policy frameworks. Telecommunications Policy, 44(6), 101961. https://doi.org/10.1016/j.telpol.2020.101961
Vold, K., & Harris, D. R. (2021). How Does Artificial Intelligence Pose an Existential Risk? En C. Véliz (Ed.), Oxford Handbook of Digital Ethics. Oxford University Press.
Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P. S., ... & Gabriel, I. (2021). Ethical and social risks of harm from language models. arXiv preprint ar- Xiv:2112.04359. https://doi.org/10.48550/arXiv.2112.04359
Yampolskiy, R. V. (2015). Taxonomy of Pathways to Dangerous Artificial Intelligence. (arXiv:1511.03246). arXiv. https://doi.org/10.48550/arXiv.1511.03246