Entrenamiento de la memoria de trabajo en la enfermedad vascular cerebral: revisión sistemática
Contenido principal del artículo
Resumen
Objetivo: mejorar la independencia funcional de los pacientes con enfermedad vascular cerebral (EVC) es uno de los objetivos que se plantean los equipos de rehabilitación física y cognitiva. Uno de los modelos que podría dar respuesta a este objetivo es el entrenamiento cognitivo de la memoria de trabajo (MT). Aunque esta estrategia se viene estudiando desde hace 20 años, aún es necesario realizar un estudio de revisión sistemática que permita conocer con claridad los efectos del entrenamiento cognitivo computarizado de la MT en el funcionamiento de la vida diaria en pacientes con EVC isquémica. Metodología: para ello, se creó una ecuación de búsqueda para aplicar en la base de datos Web of Science (WoS), en el rango temporal desde enero de 2010 a enero de 2019. Posteriormente, se realiza un análisis bibliométrico con el objetivo de identificar los autores y revistas más importantes sobre el tema de investigación. Finalmente, el reporte cronológico identifica la evolución y avances del impacto de los entrenamientos de la memoria de trabajo en la EVC. Resultados: se encontraron tres enfoques relacionados con: efectos de un programa de realidad virtual en las actividades de la vida diaria, efectos del entrenamiento de la MT en la plasticidad cerebral y efectos del entrenamiento cognitivo de la MT en las actividades de la vida diaria. Conclusión: se ha propuesto el desempeño cognitivo como uno de los componentes más importantes del funcionamiento en la vida diaria, particularmente la MT como mediador entre los programas de entrenamiento cognitivo y las habilidades funcionales. Los entrenamientos cognitivos reducen el deterioro cognitivo y el riesgo de demencia. Sin embargo, los beneficios de un entrenamiento cognitivo se limitan a dominios muy similares a los entrenados (transferencia cercana, más que lejana).
Citas
Leśniak M, Bak T, Czepiel W, Seniów J, Członkowska A. Frequency and prognostic value of
cognitive disorders in stroke patients. Dement Geriatr Cogn Disord 2008;26:356-63.
Jokinen H, Melkas S, Ylikoski R, Pohjasvaara T, Kaste M, Erkinjuntti T, et al. Post-stroke cognitive
impairment is common even after successful clinical recovery. Eur J Neurol 2015;22:1288-94.
Ownsworth T, Shum D. Relationship between executive functions and productivity outcomes
following stroke. Disabil Rehabil 2008;30:531-40.
Wolfe CDA, Crichton SL, Heuschmann PU, McKevitt CJ, Toschke AM, Grieve AP, et al. Estimates
of outcomes up to ten years after stroke: Analysis from the Prospective South London Stroke
Register. Plos Med 2011;8:e1001033.
Feigin VL, Barker-Collo S, Parag V, Senior H, Lawes CMM, Ratnasabapathy Y, et al. Auckland stroke
outcomes study: Part 1: Gender, stroke types, ethnicity, and functional outcomes 5 years poststroke.
Neurology 2010;75:1597-607.
Walsh ME, Galvin R, Loughnane C, Macey C, Horgan NF. Community re-integration and long-term
need in the first five years after stroke: Results from a national survey. Disability and Rehabilitation
;37:1834-8.
Singam A, Ytterberg C, Tham K, Von Koch L. Participation in complex and social everyday activities
six years after stroke: Predictors for return to pre-stroke level. Plos One 2015;10:e0144344.
Cantarella A, Borella E, Carretti B, Kliegel M, de Beni R. Benefits in tasks related to everyday life
competences after a working memory training in older adults. Int J Geriatr Psychiatry 2017;32:86-93.
Karbach J, Verhaeghen P. Making working memory work: A meta-analysis of executive-control and
working memory training in older adults. Psychol Sci 2014;25:2027-37.
Borella E, Carretti B, Cantarella A, Riboldi F, Zavagnin M, De Beni R. Benefits of training visuospatial
working memory in young-old and old-old. Dev Psychol 2014;50:714-27.
Van De Ven RM, Murre JMJ, Buitenweg JIV, Veltman DJ, Aaronson JA, Nijboer TCW, et al. The influence
of computer-based cognitive flexibility training on subjective cognitive well-being after stroke: A
multi-center randomized controlled trial. Plos One 2017;12:e0187582.
Vallaster C, Kraus S, Merigó Lindahl JM, Nielsen A. Ethics and entrepreneurship: A bibliometric study
and literature review. J Bus Res 2019;99:226-37.
Robledo S, Osorio GAG, López C. Networking en pequeña empresa: una revisión bibliográfica
utilizando la teoria de grafos. Rev Vínculos 2014;11:6-16.
Hirsch JE. An index to quantify an individual’s scientific research output. Pnas 2005;102;16569-72.
Cicerone KD, Dahlberg C, Kalmar K, Langenbahn DM, Malec JF, Bergquist TF, et al. Evidence-based cognitive
rehabilitation: Recommendations for clinical practice. Arch Phys Med Rehabil 2000;81:1596-615.
Berg IJ, Koning-Haanstra M, Deelman BG. Long-term effects of memory rehabilitation: A controlled
study. Neuropsychol Rehabil 1991;2;97-111.
Ryan T V., Ruff RM. The efficacy of structured memory retraining in a group comparison of head
trauma patients. Arch Clin Neuropsychol 1988;3:165-79.
J KM, Mary A. Computer delivery of memory retraining with head injured patients. In: Cognitive
Rehabilitation 1985;3;26-31.
Schmitter-Edgecombe M, Fahy JF, Whelan JP, Long CJ. Memory remediation after severe closed head
injury: Notebook training versus supportive therapy. J Consult Clin Psychol 1995;63:484-9.
Kirsch NL, Levine SP, Lajiness-O’neill R, Schnyder M. Computer-assisted interactive task guidance:
Facilitating the performance of a simulated vocational task. J Head Trauma Rehabil 1992;7;13-25.
Cicerone KD, Dahlberg C, Malec JF, Langenbahn DM, Felicetti T, Kneipp S, et al. Evidence-based
cognitive rehabilitation: updated review of the literature from 1998 through 2002. Arch Phys Med
Rehabil 2005;86:1681-92.
Kaschel R, Della Sala S, Cantagallo A, Fahlböck A, Laaksonen R, Kazen M. Imagery mnemonics for the
rehabilitation of memory: A randomised group controlled trial. Neuropsychol Rehabil 2002;12:127-153.
Ownsworth TL, McFarland K. Memory remediation in long-term acquired brain injury: Two approaches
in diary training. Brain Inj 1999;13:605-26.
Westerberg H, Jacobaeus H, Hirvikoski T, Clevberger P, Östensson M-L, Bartfai A, et al. Computerized
working memory training after stroke–A pilot study. Brain Inj 2007;21:21-9.
Stambrook M, Moore AD, Peters LC, Deviaene C, Hawryluk GA. Effects of mild, moderate and severe
closed head injury on long-term vocational status. Brain Inj 1990;4:183-90.
Cicerone KD, Langenbahn DM, Braden C, Malec JF, Kalmar K, Fraas M, et al. Evidence-based cognitive
rehabilitation: Updated review of the literature from 2003 through 2008. Archives of Physical Medicine
and Rehabilitation 2011;92:519-30.
Dou ZL, Man DWK, Ou HN, Zheng JL, Tam SF. Computerized errorless learning-based memory
rehabilitation for Chinese patients with brain injury: A preliminary quasi-experimental clinical design
study. Brain Inj 2006;20:219-25.
Ehlhardt LA, Sohlberg MM, Glang A, Albin R. TEACH-M: A pilot study evaluating an instructural
sequence for persons with impaired memory and excutive functions. Brain Inj 2005;19:569-83.
Campbell L, Wilson FC, McCann J, Kernahan G, Rogers RG. Single case experimental design study
of Carer facilitated Errorless Learning in a patient with severe memory impairment following TBI.
NeuroRehabilitation 2007;22:325-33.
Melton AK, Bourgeois MS. Training compensatory memory strategies via the telephone for persons
with TBI. Aphasiology 2005;19:353-64.
Pitel AL, Beaunieux H, Lebaron N, Joyeux F, Desgranges B, Eustache F. Two case studies in the
application of errorless learning techniques in memory impaired patients with additional executive
deficits. Brain Inj 2006;20:1099-110.
Tam SF, Man WK. Evaluating computer-assisted memory retraining programmes for people with
post-head injury amnesia. Brain Inj 2004;18:461-70.
Vallat C, Azouvi P, Hardisson H, Meffert R, Tessier C, Pradat-Diehl P. Rehabilitation of verbal working
memory after left hemisphere stroke. Brain Inj 2005;19:1157-64.
Vallat-Azouvi C, Pradat-Diehl P, Azouvi P. Rehabilitation of the central executive of working memory
after severe traumatic brain injury: Two single-case studies. Brain Inj 2009;23:585-94.
Vallat-Azouvi C, Pradat-Diehl P, Azouvi P. The Working Memory Questionnaire: A scale to
assess everyday life problems related to deficits of working memory in brain injured patients.
Neuropsychol Rehabil. 2012;22:634-49.
Johansson B, Tornmalm M. Working memory training for patients with acquired brain injury:
Effects in daily life. Scand J Occup Ther 2012;19:176-83.
Cho K, Yu J, Jung J. Effects of virtual reality-based rehabilitation on upper extremity function and
visual perception in stroke patients: A randomized control trial. J Phys Ther Sci 2013;24:1205-8.
Lee K-H. Effects of a virtual reality-based exercise program on functional recovery in stroke
patients: part 1. J Phys Ther Sci 2015;27:1637-40.
Faria AL, Andrade A, Soares L, I Badia SB. Benefits of virtual reality based cognitive rehabilitation
through simulated activities of daily living: A randomized controlled trial with stroke patients.
J Neuroeng Rehabil 2016;13:96.
Ekman U, Fordell H, Eriksson J, Lenfeldt N, Wåhlin A, Eklund A, et al. Increase of frontal neuronal
activity in chronic neglect after training in virtual reality. Acta Neurol Scand 2018;138:284-92.
Huang Q, Wu W, Chen X, Wu B, Wu L, Huang X, et al. Evaluating the effect and mechanism of
upper limb motor function recovery induced by immersive virtual-reality-based rehabilitation
for subacute stroke subjects: Study protocol for a randomized controlled trial. Trials 2019;20:104.
Nordvik JE, Walle KM, Nyberg CK, Fjell AM, Walhovd KB, Westlye LT, et al. Bridging the gap
between clinical neuroscience and cognitive rehabilitation: The role of cognitive training,
models of neuroplasticity and advanced neuroimaging in future brain injury rehabilitation.
NeuroRehabilitation 2014;34:81-5.
Driemeyer J, Boyke J, Gaser C, Büchel C, May A. Changes in gray matter induced by learning -
Revisited. Plos One 2008;3:e2669.
Engvig A, Fjell AM, Westlye LT, Moberget T, Sundseth O, Larsen VA, et al. Effects of memory
training on cortical thickness in the elderly. Neuroimage 2010;52:1667-76.
Draganski B, Gaser C, Kempermann G, Kuhn HG, Winkler J, Buchel C, et al. Temporal and spatial
dynamics of brain structure changes during extensive learning. J Neurosci 2006;26:6314-7.
Haier RJ, Karama S, Leyba L, Jung RE. MRI assessment of cortical thickness and functional activity
changes in adolescent girls following three months of practice on a visual-spatial task. BMC
Res Notes 2009;2:174.
Fields RD. White matter in learning, cognition and psychiatric disorders. Trends in Neurosciences
;31:361-70.
Takeuchi H, Sekiguchi A, Taki Y, Yokoyama S, Yomogida Y, Komuro N, et al. Training of working
memory impacts structural connectivity. J Neurosci 2010;30:3297-303.
Nordvik JE, Schanke AK, Walhovd K, Fjell A, Grydeland H, LandrØ NI. Exploring the relationship
between white matter microstructure and working memory functioning following stroke: A
single case study of computerized cognitive training. Neurocase 2012;18:139-51.
Leung AWS, Barrett LM, Butterworth D, Werther K, Dawson DR, Brintnell ES. Neural plastic effects
of working memory training influenced by self-perceived stress in stroke: A case illustration.
Front Psychol 2016;7:1266.
Yoo C, Yong M, Chung J, Yang Y. Effect of computerized cognitive rehabilitation program on
cognitive function and activities of living in stroke patients. J Phys Ther Sci 2015;27:2487-9.
Wentink MM, Berger MAM, de Kloet AJ, Meesters J, Band GPH, Wolterbeek R, et al. The effects
of an 8-week computer-based brain training programme on cognitive functioning, QoL and
self-efficacy after stroke. Neuropsychol Rehabil. 2016;26:847-65.
Guye S, Röcke C, Martin M, von Bastian CC. Functional ability in everyday life: Are associations
with an engaged lifestyle mediated by working memory? Journals Gerontol Ser B 2019;11;1-11.