Privación sensorial temprana durante el neurodesarrollo y sus consecuencias cognitivas

Barra lateral del artículo

Contenido principal del artículo

Juan Felipe Álvarez Restrepo
  • Biografía

    Programa de Medicina, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana. Cali, Colombia.

Lina Vanessa Becerra-Hernández
  • Biografía

    Programa de Medicina, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana. Cali, Colombia.

Resumen

La aparición progresiva de habilidades sensoriales, motoras y cognitivo-afectivas en el humano a lo largo de su desarrollo es un reflejo de cambios fisiológicos que se gestan al interior del sistema nervioso. Dichos cambios hacen parte de procesos dinámicos y dependen, después del nacimiento, de la actividad eléctrica inducida por la experiencia. Considerando lo anterior, el sistema nervioso en desarrollo constituye una especie de protomapa, sobre el que la experiencia moldea características moleculares, neuroquímicas y de conectividad, que se reflejan en las actividades emergentes del sistema. La eviden­cia que soporta la importancia que la influencia experiencial tiene sobre el desarrollo del sistema nervioso viene en aumento. Esta revisión reúne información sobre estudios en modelos biológicos y en humanos sometidos a privación sensorial y ambiental. Se enfatiza en la caracterización de los rasgos cognitivos y sociales.

Palabras clave:
development, synapsis, neuronal plasticity, cognition desarrollo, sinapsis, plasticidad neuronal, cognición desenvolvimento, sinapse, plasticidade neuronal, cognição

Detalles del artículo

Referencias

Changeux JP, Danchin A. Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature. 1976; 264(5588):705-12.

Purves D, Lichtman JW. Elimination of synapses in the developing nervous system. Science. 1980; 210(4466):153-7.

Huttenlocher P. Synaptic density in human frontal cortex - Developmental changes and effects of aging. Brain Res. 1979; 163:195-205.

Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. 2004; 101(21): 8174-9.

Monje M. Myelin plasticity and nervous system function. Annu Rev Neurosci. 2018; 41:61-76.

Gutiérrez-Soriano JR, Ortiz-León S, Follioux C, Zamora-López B, Petra I [Internet]. Funciones mentales: neurobiología. Ciudad de México: Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, UNAM; 2017 [citado el 10 de abril de 2020]. Disponible en: psiquiatria. facmed.unam.mx/docs/ism/unidad3.pdf

Bennett L, Diamond C, Krech D, Rosenzweig MR. Chemical Plasticity and Anatomical of Brain. Neuropsychiatry Class. 1956; 146:459-70.

Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010; 20(4):327-48.

Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci. 2005; 6:877-88.

Purves D, Augustine GJ. [Internet]. Neuroscience. Experience dependent plasticity [citado el 10 de abril de 2020]. Disponible en: https://drive.google.com/a/uci.edu/file/ d/0BwBjTzNOHOvCV1owMGlzWXB3QTA/view?usp=drive_web

Chechik G. Neuronal Regulation: A mechanism for synaptic pruning during brain maturation. Neural Comput. 1999; 2080:2061-80.

Han K, Cooke SF, Han K, Cooke SF, Xu W. Experience-dependent equilibration of AMPARmediated synaptic transmission during the critical period. Cell Reports. 2017; 18(4):892-904.

Binder DK, Schafman HE. Barin-derived neurotrophic factor. Natl Institutes Heal. 2008; 22(3):123-31.

Diamond MC, Law FAY, Rhodes H, Bennett EL. Increases in cortical depth and glia numbers in rats subjected to enriched environment. J Comp Neurol. 1996; 117-25.

Diamond MC, Rosenzweig MR, Edward L, Lindner B, Lyon L. Effects of environmental enrichment and impoverishment on rat cerebral cortez. J Neurobiol. 1972; 3(1):47-64.

Fregnanc Y, Imbert M. Early development of visual cortical cells in normal and dark-reared kittens: Relationship between orientation selectivity and ocular dominance. J Physiol. 1978; 278:27-44.

Mwachaka PM, Saidi H, Odula PO, Mandela PI. Effect of monocular deprivation on rabbit neural retinal cell densities. J Ophthalmic Vis Res. 2015; 10(2):144-50.

Vandewalle G, Voss P, Collignon O, Dormal G. Impact of blindness onset on the function organization and the connectivity of the occipital cortex. A J Neurol. 2013; 136:2769-83.

Pham TA, Impey S, Storm DR, Stryker MP, Francisco S. CRE-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period. Neuron. 1999; 22:63-72.

Mangina CA, Sokolov EN. Neuronal plasticity in memory and learning abilities: Theoretical position and selective review. Int J Psychophysiol. 2006; 60:203-14.

Guerreiro MJ, Putzar L, Röder B. The effect of early visual deprivation on the neural bases of multisensory processing. Brain. 2015; 138(6):1499-504.

Gunnar M, Quevedo K. The neurobiology of stress and development. Annu Rev Psychol. 2007; 58(1):145-73.

Li F, Zhang Y, Jing X, Yan C, Shen X. The influence of forepaw palmar sensorimotor deprivation on learning and memory in young rats. 2009; 63:17-23.

Li F, Zhang Y, Jing X, Yan C, Shen X. Memory impairment in early sensorimotor deprived rats is associated with suppressed hippocampal neurogenesis and altered CREB signaling. Behav Brain Res. 2010; 207:458-65.

Rocha EM, Marche TA, Baeyer CL. Anxiety influences children’s memory for procedural pain. Pain Res Manag. 2009; 14(3):233-8.

Stawski RS, Smyth JM. The effects of an acute psychosocial stressor on episodic memory. Eur J Cogn Psychol. 2009; 21(6):1-19.

Kloosterboer E, Funke K. Repetitive transcranial magnetic stimulation recovers cortical map plasticity induced by sensory deprivation due to deafferentation. J Physiol. 2019; 15:4025-51.

Raz M. Was cultural deprivation in fact sensory deprivation? Deprivation, retardation and intervention in the USA. Hist Human Sci. 2011; 24:51-69.

McLaughlin KA, Sheridan MA, Lambert HK. Childhood adversity and neural development: Deprivation and threat as distinct dimensions of early experience. Neurosci Biobehav Rev. 2014; 47:578-91.

Bauer PM, Hanson JL, Pierson RK, Davidson RJ, Pollak D. Cerebellar volume and cognitive functioning in children who experienced early deprivation. 2010; 66(12):1100-6.

Zeanah CH, Nelson CA, Fox NA, Smyke AT, Marshall P, Parker SW. Designing research to study the effects of institutionalization on brain and behavioral development: The Bucharest Early Intervention Project. Dev Psychopathol. 2003; 15:885-907.

Pollak SD, Hanson J. Early stress is associated with alterations in the orbitofrontal cortex: A tensor-based morphometry investigation of brain structure and behavioral risk. J Neurosci. 2010; 30(22):7466-72.

McLaughling KA, Zeanah CH, Nelson CA. Widespread reductions in cortical thickness following severe early-life deprivation: A neurodevelopmental pathway to ADHD. Biol Psychiatry. 2015; 76(8):629-38.

Brito A, Viding E, Sebastian CL, Kelly PA, Mechelli A, Maris H, et al. Reduced orbitofrontal and temporal grey matter in a community sample of maltreated children. J Child Psychol Psychiatry. 2012; 54:105-12.

Connor TG, Rutter M, Beckett C, Keaveney L, Kreppner JM. The effects of global severe privation on cognitive competence: Extension and longitudinal follow-up. Child Dev. 2000; 71(2):376-90.

Amsterdam VU, Bunkers KM, Groark CJ, Groza V. The development and care of institutionally reared children. Child Dev Perspect. 2012; 6:174-80.

Smyke AT, Koga SF, Johnson DE, Fox NA, Marshall J, Nelson CA, et al. The caregiving context in institution-reared and family-reared infants and toddlers in Romania. J Child Psychol Psychiatry. 2007; 2:210-8.

Leporé N, Voss P, Lepore F, Chou Y, Fortin M, Gougoux F, et al. Brain structure changes visualized in early- and late-onset blind subjects. Neuroimage. 2010;4 9(1):134-40.

Fine I, Wade AR, Brewer AA, May MG, Goodman DF, Boynton GM, et al. Long-term deprivation affects visual perception and cortex. Nat Neurosci. 2003; 6(9):915-6.

Pimperton H, Ralph-Lewis A, Macsweeney M, William M, Dye G. Speechreading in deaf Adults with cochlear implants: Evidence for perceptual compensation. Front Psychol. 2017; c8(February):1-10.

Chugani HT, Behen ME, Muzik O, Juha C. Local brain functional activity following early deprivation: A study of postinstitutionalized romanian orphans. Neuroimage. 2001; 1301:1290-301.

Mueller SC, Maheu FS, Dozier M, Peloso E, Mandell D, Leibenluft E, et al. Early-life stress is associated with impairment in cognitive control in adolescence: An fMRI study. Neuropsychologia. 2010; 48(10):3037-44.

Cohen RA, Grieve S, Hoth KF, Paul RH, Sweet L, Tate D, et al. Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. J Biopychology. 2005; 59(10):975-82.

Dye MW, Pascalis O. The sensation-cognition interface: Impact of early sensory experiences on cognition. Front Psychol. 2017; 8(October):8-10.

Iii CA, Westerlund A, Mcdermott JM, Fox NA. Emotion recognition following early psychosocial deprivation. Dev Psychopathol. 2014; 25(2):517-25.

Davis M, Whalen PJ. The amygdala: Vigilance and emotion. Mol Psichiatr. 2001; 6:13-34.

Yang L, Zhao Y, Wang Y, Liu L, Zhang X. The effects of psychological stress on depression. Curr Neuropharmacol. 2015; 13:494-504.

Hawkey EJ, Tillman R, Luby JL, Barch DM. Preschool executive function predicts childhood resting-state functional connectivity and attention-deficit/hyperactivity disorder and depression. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; 3(11):927-36.

Marek S, Hwang K, Foran W, Hallquist MN, Luna B. The contribution of network organization and integration to the development of cognitive control. Plos Biol. 2015; 13:1-25.

Nelson CA, Furtado EA, Fox NA, Zeanah CH. The deprived human brain. American Scientist. 2009; (97):222-9.

Nelson CA, Zeanah CH, Fox NA, Marshall PJ, Smyke AT, Guthrie D. Cognitive recovery in socially deprived young children: The Bucharest early intervention project. Science. 2007; 318(5858):1937-40