Proteínas oxidadas de origen animal y su impacto sobre la salud intestinal

Contenido principal del artículo

Diemer Muñoz Verbel
Eutimio Cueto Almeida
Valentina Morales Meléndez
Amalfy García Lombana
Dilia Aparicio Marenco
Johana Márquez Lázaro


Los alimentos de origen animal como la carne de pollo, res, pescado y cerdo poseen una amplia demanda en todo el mundo debido, entre otros aspectos, a su valor nutricional, asociado al alto contenido proteico. No obstante, este tipo de proteínas son susceptibles de sufrir reacciones de oxidación, las cuales pueden mediar procesos de fragmentación, agregación, pérdida de solubilidad, funcionalidad y digestibilidad proteica; eventos implicados en la pérdida de su valor nutricional. En este sentido, las proteínas agrega­das tienden a no ser digeridas en el tracto gastrointestinal y acumularse en el intestino (colon), donde la microbiota colónica las degrada a productos mutagénicos como fenol y p-cresol, lo que incrementa el riesgo de cáncer colorrectal. Por otra parte, los ami­noácidos o péptidos oxidados liberados en la digestión podrían incorporarse en las vías de señalización celular intestinal y favorecer o exacerbar procesos intestinales crónicos como colon irritable o enfermedad de Crohn. Debido al gran interés de esta temática en los últimos años, el objetivo de esta revisión es realizar una descripción general del impacto de proteínas oxidadas de origen animal sobre la salud intestinal.

Palabras clave:
oxidación proteínas alimentos intestino cáncer


Wood JD. Meat composition and nutritional value. Lawrie’s Meat Sci. Eighth Ed. 2017;635-59.

Pereira PM, Vicente AF. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013;93(3):586-92.

Zhang W, Xiao S, Ahn DU. Protein oxidation: Basic principles and implications for meat quality. Crit Rev Food Sci Nutr. 2013;53(11):1191-201.

Estévez M. Oxidative damage to poultry: From farm to fork. Poult Sci. 2015;94(6):1368-78.

Hrycay EG, Bandiera SM. Involvement of cytochrome P450 in reactive oxygen species formation and cancer. Adv Pharmacol. 2015;74:35-84.

Soladoye OP, Juárez ML, Aalhus JL, Shand P, Estévez M. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Compr Rev Food Sci Food Saf. 2015;14(2):106-22.

Estévez M, Li Z, Soladoye OP, Van-Hecke T. Health risks of food oxidation. Adv Food Nutr Res. 2017;82:45-81.

Domínguez R, Pateiro M, Munekata PES, Zhang W, García-Oliveira P, Carpena M, et al. Protein oxidation in muscle foods: A comprehensive review. Antioxidants. 2022;11(1):34-46.

Kim YJ, Kim EH, Hahm KB. Oxidative stress in inflammation-based gastrointestinal tract diseases: challenges and opportunities. J Gastroenterol Hepatol. 2012;27(6):1004-10.

Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329-54.

Brown K, Molcan E, Rajendiran E, Nusrat A, Baker J, Ruscheinsky S, et al. Free radicals and gastrointestinal disorders. En: Laher I, editor. Systems Biology of Free radicals and antioxidants. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 1691-727.

Yun B, King M, Draz MS, Kline T, Rodriguez-Palacios A. Oxidative reactivity across kingdoms in the gut: Host immunity, stressed microbiota and oxidized foods. Free Radic Biol Med. 2022;178:97-110.

Di Meo S, Venditti P. Evolution of the knowledge of free radicals and other oxidants. Oxid Med Cell Longev. 2020;ID9829176:32.

Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci U S A. 2018;115(23):5839-48.

Snezhkina A, Kudryavtseva V, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, et al. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev. 2019;ID:6175804.

Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 2017;38(7):592-607.

FAO. FAO’s animal production and health division: Meat & meat products. 2021. Disponible en:

Listrat A, Lebret B, Louveau I, Astruc T, Bonnet M, Lefaucheur L, et al. How muscle structure and composition influence meat and flesh quality. Sci World J. 2016;2016:1-14.

OECD Data. Agricultural output - Meat consumption. 2021. Disponible en: https://data.oecd. org/agroutput/meat-consumption.htm

Guo X, Qin B, Yang X, Jia J, Niu J, Li M, et al. Comparison of carcass traits, meat quality and expressions of MyHCs in muscles between mashen and large white pigs. Ital J Anim Sci. 2019;18(1):1410-8.

De Castro Cardozo P, Dos Reis Baltazar A. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013;93(3):586-92.

Lupoli R, Vitale M, Calabrese I, Giosuè A, Riccardi G, Vaccaro O. White meat consumption, all-cause mortality, and cardiovascular events: A meta-analysis of prospective cohort studies. Nutrients. 2021;13(2):1-16.

Millward DJ, Layman DK, Tomé D, Schaafsma G. Protein quality assessment: Impact of expanding understanding of protein and amino acid needs for optimal health. Am J Clin Nutr. 2008;87(5):1576S-1581S.

De la Pomélie D, Santé-Lhoutellier V, Sayd T, Gatellier P. Oxidation and nitrosation of meat proteins under gastro-intestinal conditions: Consequences in terms of nutritional and health values of meat. Food Chem. 2018;243:295-304.

Ahmad RS, Imran A, Hussain MB. Nutritional composition of meat. En: Meat Science and Nutrition. InTech; 2018.

Gallego M, Mora L, Hayes M, Reig M, Toldrá F. Effect of cooking and in vitro digestion on the antioxidant activity of dry-cured ham by-products. Food Res Int. 2017;97:296-306.

Xiong YL. Chemical and physical characteristics of meat| Protein Functionality. En: Encyclopedia of Meat Sciences. Elsevier; 2004. p. 218-25.

Yin Y, Zhou L, Pereira J, Zhang J, Zhang W. Insights into digestibility and peptide profiling of beef muscle proteins with different cooking methods. J Agric Food Chem. 2020;68(48):14243-51.

Mafra D, Barros AF, Fouque D. Dietary protein metabolism by gut microbiota and its consequences for chronic kidney disease patients. Future Microbiol. 2013;8(10):1317-23.

Wu DW, Chen X, Yang X, Leng ZX, Yan PS, Zhou YM. Effects of heat treatment of soy protein isolate on the growth performance and immune function of broiler chickens. Poult Sci. 2014;93(2):326-34.

Deb-Choudhury S, Haines S, Harland D, Clerens S, van Koten C, Lee E, et al. Multi-parameter evaluation of the effect of processing conditions on meat protein modification. Heliyon. 2020;6(6):e04185.

Ma J, Wang X, Li Q, Zhang L, Wang Z, Han L, et al. Oxidation of myofibrillar protein and crosslinking behavior during processing of traditional air-dried yak (Bos grunniens) meat in relation to digestibility. LWT. 2021;142:110984.

Hellwig M. Analysis of protein oxidation in food and feed products. J Agric Food Chem. 2020;68(46):12870-85.

Malheiros JM, Braga CP, Grove RA, Ribeiro FA, Calkins CR, Adamec J, et al. Influence of oxidative damage to proteins on meat tenderness using a proteomics approach. Meat Sci. 2019;14864-71.

Estévez M, Xiong Y. Intake of oxidized proteins and amino acids and causative oxidative stress and disease: Recent scientific evidences and hypotheses. J Food Sci. 2019;84(3):387-96.

Mora L, Gallego M, Aristoy MC, Toldrá F. Protein oxidation. Encycl Food Chem. 2019;17:41-7.

Curtis JM, Hahn WS, Long EK, Burrill JS, Arriaga EA, Bernlohr DA. Protein carbonylation and metabolic control systems. Trends Endocrinol Metab. 2012;23(8):399-406.

Estévez M. Protein carbonyls in meat systems: A review. Meat Sci. 2011;89(3):259-79.

Alessandra de Avila Souza M, Shimokomaki M, Nascimento Terra N, Petracci M. Oxidative changes in cooled and cooked pale, soft, exudative (PSE) chicken meat. Food Chem. 2022;385:132471.

Zhang C, Li Y, Xia X, Sun Q, Sun F, Kong B. Changes in protein oxidation, structure, and thermal stability of chicken breast subjected to ultrasound-assisted immersion freezing during frozen storage. Food Chem . 2023;398:133874.

Higuero N, Ramírez MR, Vidal-Aragón M del C, Cava R. Influence of high-pressure processing and varying concentrations of curing salts on the color, heme pigments and oxidation of lipids and proteins of Iberian dry-cured loins during refrigerated storage. LWT. 2022;160:113251.

Márquez-Lázaro JP, Mora L, Méndez-Cuadro D, Rodríguez-Cavallo E, Toldrá F. In vitro oxidation promoted by sarafloxacin antibiotic residues on myosin and chicken meat proteins. J Food Compos Anal. 2022;111:104622.

Villaverde A, Ventanas J, Estévez M. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: Are both events connected? Meat Sci. 2014;98(4):665-72.

De Palo P, Maggiolino A, Centoducati P, Tateo A. Effects of two different packaging materials on veal calf meat quality and shelf life1. J Anim Sci. 2013;91(6):2920-30.

Hu L, Ren S, Shen Q, Chen J, Ye X, Ling J. Proteomic study of the effect of different cooking methods on protein oxidation in fish fillets. RSC Adv. 2017;7(44):27496-505.

Utrera M, Estévez M. Oxidative damage to poultry, pork, and beef during frozen storage through the analysis of novel protein oxidation markers. J Agric Food Chem. 2013;61(33):7987-93.

Márquez-Lázaro JP, Mora L, Méndez-Cuadro D, Rodríguez-Cavallo E, Toldrá F. In vitro oxidation promoted by chlorpyrifos residues on myosin and chicken breast proteins. Food Chem. 2020;326:126922.

Márquez-Lázaro J, Méndez-Cuadro D, Rodríguez-Cavallo E. Residues of fluoroquinolone antibiotics induce carbonylation and reduce in vitro digestion of sarcoplasmic and myofibrillar beef proteins. Foods.2020;9(2):170.

Santé-Lhoutellier V, Engel E, Aubry L, Gatellier P. Effect of animal (lamb) diet and meat storage on myofibrillar protein oxidation and in vitro digestibility. Meat Sci. 2008;79(4):777-83.

Bao Y, Ertbjerg P. Effects of protein oxidation on the texture and water-holding of meat: A review. Crit Rev Food Sci Nutr. 2019;59(22):3564-78.

Xiong YL, Guo A. Animal and plant protein oxidation: Chemical and functional property significance. Foods. 2021;10(1):40.

Ton AMM, Campagnaro BP, Alves GA, Aires R, Côco LZ, Arpini CM, et al. Oxidative stress and dementia in Alzheimer’s patients: Effects of synbiotic supplementation. Oxid Med Cell Longev. 2020;2020:ID 2638703.

Tunçel ÖK, Sarisoy G, Bilgici B, Pazvantoglu O, Çetin E, Ünverdi E, et al. Oxidative stress in bipolar and schizophrenia patients. Psychiatry Res. 2015;228(3):688-94.

Miletić J, Drakulić D, Pejić S, Petković M, Ilić T V, Miljković M, et al. Prooxidant-antioxidant balance, advanced oxidation protein products and lipid peroxidation in Serbian patients with Parkinson’s disease. Int J Neurosci. 2018;128(7):600-7.

Oliveira SR, Kallaur AP, Reiche EMV, Kaimen-Maciel DR, Panis C, Lozovoy MAB, et al. Albumin and protein oxidation are predictors that differentiate relapsing-remitting from progressive clinical forms of multiple sclerosis. Mol Neurobiol. 2017;54(4):2961-8.

Chen X, Chen YP, Wu DW, Wen C, Zhou YM. Effects of heat-oxidized soy protein isolate on growth performance and digestive function of broiler chickens at early age. Asian-Australasian J Anim Sci. 2015;28(4):544-50.

Frame CA, Johnson E, Kilburn L, Huff-Lonergan E, Kerr BJ, Serao MR. Impact of dietary oxidized protein on oxidative status and performance in growing pigs. J Anim Sci. 2020;98(5):34532.

Andrassy M, Igwe J, Autschbach F, Volz C, Remppis A, Neurath MF, et al. Posttranslationally modified proteins as mediators of sustained intestinal inflammation. Am J Pathol. 2006;169(4):1223.

Xie F, Sun S, Xu A, Zheng S, Xue M, Wu P, et al. Advanced oxidation protein products induce intestine epithelial cell death through a redox-dependent, c-jun N-terminal kinase and poly (ADP-ribose) polymerase-1-mediated pathway. Cell Death Dis. 2014;5(1):e1006-e1006.

Krzystek-Korpacka M, Kempiński R, Bromke MA, Neubauer K. Oxidative stress markers in inflammatory bowel diseases: Systematic review. Diagnostics. 2020;10(8):601.

Wu L, Tang Z, Chen H, Ren Z, Ding Q, Liang K, et al. Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health. Anim Nutr. 2021;7(1):11-6.

Pereira C, Grácio D, Teixeira JP, Magro F. Oxidative stress and DNA damage: Implications in Inflammatory Bowel Disease. Inflamm Bowel Dis. 2015;21(10):2403-17.

Gagnière J. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22(2):501.

Al Hinai EA, Kullamethee P, Rowland IR, Swann J, Walton GE, Commane DM. Modelling the role of microbial p-cresol in colorectal genotoxicity. Gut Microbes. 2019;10(3):398-411.

Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661-72.

Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L, Calder AG, et al. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res. 2013;57(3):523-35.

Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683-91.

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49.

Detalles del artículo

Biografía del autor/a

Diemer Muñoz Verbel, Corporación Universitaria Rafael Núñez

Corporación Universitaria Rafael Núñez, Grupo GINUMED, Programa de Medicina. Cartagena de Indias, Colombia.

Eutimio Cueto Almeida, Corporación Universitaria Rafael Núñez

Corporación Universitaria Rafael Núñez, Grupo GINUMED, Programa de Medicina. Cartagena de Indias, Colombia.

Valentina Morales Meléndez, Corporación Universitaria Rafael Núñez

Corporación Universitaria Rafael Núñez, Grupo GINUMED, Programa de Medicina. Cartagena de Indias, Colombia.

Amalfy García Lombana, Corporación Universitaria Rafael Núñez

Corporación Universitaria Rafael Núñez, Grupo GINUMED, Programa de Medicina. Cartagena de Indias, Colombia.

Dilia Aparicio Marenco, Corporación Universitaria Rafael Núñez

Corporación Universitaria Rafael Núñez, Grupo GINUMED, Programa de Medicina. Cartagena de Indias, Colombia.

Johana Márquez Lázaro, Corporación Universitaria Rafael Núñez

Corporación Universitaria Rafael Núñez, Grupo GINUMED, Programa de Medicina. Cartagena de Indias, Colombia.