Mecanismo y diseño de vacunas para el sars-cov-2, revisión narrativa

Contenido principal del artículo

Jorge Eliecer Sara Ochoa
Maria Claudia Sara Cueto
Arlis Cueto Padilla

Resumen

La infección por el virus SARS-CoV-2, conocida como COVID-19, ha causado alta morbilidad y mortalidad en el mundo. Después de haber descifrado el código genético del virus y haber desarrollado un gran trabajo investigativo en la creación de vacunas, con diversas estrategias de acción, se ha logrado disminuir la morbi mortalidad. Fue necesario acelerar el proceso de producción de vacunas, lo cual estuvo facilitado por el avanzado conocimiento científico en el campo de la genética y la virología, para brindar a la especie humana una protección eficaz y segura contra la agresiva y progresiva infección. Las vacunas se clasifican de acuerdo con su mecanismo de acción, existen vacunas basadas en vectores virales que no se replican, vacunas recombinantes, otras basadas en virus atenuados y virus inactivos, y (la gran novedad de la ciencia actual) las vacunas basadas en ARN mensajero y ADN. Estas últimas han demostrado una gran eficacia y seguridad en la prevención de la infección por el SARS-CoV-2, también han impactado de manera fuerte, por lo que han reducido la infección y la mortalidad en la población. En consecuencia, cada día que pasa desde que se inició el periodo de vacunación mundial, se evidencia una reducción en la curva de contagio y mortalidad por COVID-19.

Palabras clave:
COVID-19 vacunas ARN mensajero inmunización SARS-CoV-2 proteína Spike

Citas

Moura M, Marçal G, Garcia S, Mendonça M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci. 2021;267:118919.

Marian AJ. Current state of vaccine development and targeted therapies for COVID-19: impact of basic science discoveries. Cardiovascular Pathology. 2021;50:107278.

Boehm E, Kronig I, Neher RA, Eckerle I, Vetter P, Kaiser L. Novel SARS-CoV-2 variants: The pandemics within the pandemic. Clin Microbiol Infect. 2021;27(8):1109-1117.

Ong SWX, Chiew CJ, Ang LW, Mak TM, Cui L, Toh MPH, et al. Clinical and virological features of SARS-CoV-2 variants of concern: A retrospective cohort study comparing B.1.1.7 (Alpha), B.1.315 (Beta), and B.1.617.2 (Delta). SSRN Electronic Journal. 2021;2:e1128–36.

Imai M, Halfmann PJ, Yamayoshi S, Iwatsuki-Horimoto K, Chiba S, Watanabe T, et al. Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proc Natl Acad Sci USA. 2021;118(27):1-9.

da Silva JC, Félix VB, Leão SABF, Trindade-Filho EM, Scorza FA. New Brazilian variant of the SARS-CoV-2 (P1/Gamma) of COVID-19 in Alagoas state. Brazilian Journal of Infectious Diseases. 2021;25(3):101588.

Sun C, Xie C, Bu GL, Zhong LY, Zeng MS. Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduct Target Ther. 2022;7(1):202.

Rawat K, Kumari P, Saha L. COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies. Eur J Pharmacol. 2021;892:173751.

Raman R, Patel KJ, Ranjan K. COVID-19: Unmasking emerging SARS-CoV-2 variants, vaccines and therapeutic strategies. Biomolecules. 2021;11(7):993.

Sharma O, Sultan AA, Ding H, Triggle CR. A review of the progress and challenges of developing a vaccine for COVID-19. Front Immunol. 2020;11:1–17.

Izda V, Jeffries MA, Sawalha AH. COVID-19: A review of therapeutic strategies and vaccine candidates. Clinical Immunology. 2021;222:108634.

Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): A single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2020;396(10267):1979–93.

Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397(10269):99–111.

Scully M, Singh D, Lown R, Poles A, Solomon T, Levi M, et al. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. New Eng J Med. 2021;384(23):2202–11.

Sharifian-dorche M, Bahmanyar M, Sharifian-dorche A. Vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis post COVID-19 vaccination; a systematic review. J Neurol Sci. 2021;428:117607.

Emary KRW, Golubchik T, Aley PK, Ariani C, Angus B, Bibi S, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): An exploratory analysis of a randomised controlled trial. Lancet. 2021;397(10282):1351–62.

Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N Eng J Med. 2021;384(20):1885–98.

Borobia A, Carcas A, Perez-Olmeda M, Bertran M, Garcia-Perez J, Campins M, et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): A multicentre, open-label, randomised, controlled, pase 2 trial. Lancet. 2021;398:121–30.

Liu X, Shaw RH, Stuart A, Greenland M, Aley P, Andrews N, et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): A single-blind, randomised, non-inferiority trial. Lancet. 2021;398:856–69.

Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and efficacyof single-dose Ad26.COV2.S vaccine against Covid-19. N Eng J Med. 2021;384(23):2187–201.

Alter G, Yu J, Liu J, Chandrashekar A, Borducchi EN, Tostanoski LH, et al. Immunogenicity of

Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature. 2021;596(7871):268–72.

Bucci E, Andreev K, Björkman A, Calogero RA, Carafoli E, Carninci P, et al. Safety and efficacy of the Russian COVID-19 vaccine: More information needed. Lancet. 2020;396(10256):e53.

Cazzola M, Rogliani P, Mazzeo F, Gabriella M. Controversy surrounding the Sputnik V vaccine. Respir Med. 2021;187:106569.

Logunov D, Dolzhikova I, Shcheblyakov D, Tukhvatulin A, Zubkova O, Dzharullaeva A, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397:671–81.

Gushchin VA, Dolzhikova I, Shchetinin AM, Odintsova AS, Siniavin AE, Nikiforova MA, et al. Neutralizing activity of sera from Sputnik V-vaccinated People against variants of concern (VOC: B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3) and Moscow endemic SARS-CoV-2 variants. Vaccines (Basel). 2021;9(7):779.

Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et al. Safety and efficacy of NVXCoV2373 Covid-19 vaccine. N Eng J Med. 2021;385:1172–83.

Park JW, Lagniton PNP, Liu Y, Xu RH. mRNA vaccines for covid-19: What, why and how. Int J Biol Sci. 2021;17(6):1446–60.

Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;1–13.

Kow CS, Hasan SS. Real-world effectiveness of BNT162b2 mRNA vaccine: A meta-analysis of large observational studies. Inflammopharmacology. 2021;29(4):1075–90.

Frenck RW, Klein NP, Kitchin N, Gurtman A, Absalon J, Lockhart S, et al. Safety, immunogenicity, and efficacy of the BNT162b2 Covid-19 vaccine in adolescents. N Eng J Med. 2021;385(3):239–50.

Thomas SJ, Moreira ED, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N Eng J Med. 2021;383(27):2603–15.

Singh B, Kaur P, Kumar V, Maroules M. COVID-19 vaccine induced axillary and pectoral lymphadenopathy on PET scan. Radiol Case Rep. 2021;16(7):1819–21.

Cabanillas B, Novak N. Allergy to COVID-19 vaccines: A current update. Allergology International. 2021;70:313–8.

Abu S, Roguin A, Hellou E, Ishai A, Shoshan U, Mahamid L. Myocarditis following COVID-19 mRNA vaccination. Vaccine. 2021;39:3790–3.

Larson KF, Ammirati E, Adler ED, Cooper LT, Hong KN, Saponara G, et al. Myocarditis after BNT162b2 and mRNA-1273 vaccination. Circulation. 2021;144:506–8.

Kim IC, Kim H, Lee HJ, Kim JY, Kim JY. Cardiac imaging of acute myocarditis following COVID-19 mRNA vaccination. J Korean Med Sci. 2021;36(32):1–6.

Lee YW, Lim SY, Lee JH, Lim JS, Kim M, Kwon S, et al. Adverse reactions of the second doce of the BNT162b2 mRNA COVID-19 vaccine in healthcare workers in Korea. J Korean Med Sci. 2021;36(21):1–6.

Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Kalkstein N, et al. Protection of BNT162b2 vaccine booster against Covid-19 in Israel. N Engl J Med. 2021;385:1393–400.

Baden LR, el Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Eng J Med. 2021;384(5):403–16.

Ali K, Berman G, Zhou H, Deng W, Faughnan V, Coronado-Voges M, et al. Evaluation of mRNA- 1273 SARS-CoV-2 vaccine in adolescents. N Eng J Med. 2021;1–11.

el Sahly HM, Baden LR, Essink B, Doblecki-Lewis S, Martin JM, Anderson EJ, et al. Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase. N Engl J Med. 2021;1–12.

Kadali RAK, Janagama R, Peruru S, Gajula V, Madathala RR, Chennaiahgari N, et al. Nonlife- threatening adverse effects with COVID-19 mRNA-1273 vaccine: A randomized, crosssectional study on healthcare workers with detailed self-reported symptoms. J Med Virol. 2021;93(7):4420–9.

Kong J, Cuevas-Castillo F, Nassar M, Lei CM, Idrees Z, Fix WC, et al. Bullous drug eruption after second dose of mRNA-1273 (Moderna) COVID-19 vaccine: Case report. Journal of Infection and Public Health. 2021;14(10):19–21.

Malayala S, Mohan G, Vasireddy D, Atluri P. Purpuric rash and thrombocytopenia after the mRNA-1273 (Moderna) COVID-19 Vaccine. Cureus. 2021;1273:3–6.

Shimabukuro T. Allergic reactions including anaphylaxis after receipt of the first dose of Moderna COVID-19 vaccine —United States, December 21, 2020–January 10, 2021. American Journal of Transplantation. 2021;21(3):1326–31.

Torrealba-Acosta G, Martin JC, Huttenbach Y, Garcia CR, Sohail MR, Agarwal SK, et al. Acute encephalitis, myoclonus and Sweet syndrome after mRNA-1273 vaccine. BMJ. 2021;14(7):1–5.

Noori M, Nejadghaderi SA, Arshi S, Carson-Chahhoud K, Ansarin K, Kolahi AA, et al. Potency of BNT162b2 and mRNA-1273 vaccine-induced neutralizing antibodies against severe acute respiratory syndrome-CoV-2 variants of concern: A systematic review of in vitro studies. Rev Med Virol. 2021;32(2):e2277.

Kaur SP, Gupta V. COVID-19 Vaccine: A comprehensive status report. Virus Res. 2020;288:198114.

Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: A randomised, double-blind,

placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021;21(2):181-192.

Tanriover MD, Doğanay HL, Akova M, Güner HR, Azap A, Akhan S, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): Interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet. 2021;398(10296):213-222.

Wu Z, Hu Y, Xu M, Chen Z, Yang W, Jiang Z, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021;21(6):803-812.

Han B, Song Y, Li C, Yang W, Ma Q, Jiang Z, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: A doubleblind, randomised, controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021;21(12):1645-1653.

Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet. 2021;397(10287):1819-1829.

Butt AA, Yan P, Shaikh OS, Mayr FB. Outcomes among patients with breakthrough SARS-CoV-2 infection after vaccination in a high-risk national population. EClinicalMedicine. 2021;40:101117.

Butt AA, Nafady-Hego H, Chemaitelly H, Abou-Samra AB, Khal A, Coyle P, et al. Outcomes among patients with breakthrough SARS-CoV-2 infection after vaccination. International Journal of Infectious Diseases. 2021;110:353–8.

Thompson MG, Burgess JL, Naleway AL, Tyner H, Yoon SK, Meece J, et al. Prevention and attenuation of Covid-19 with the BNT162b2 and mRNA-1273 vaccines. N Eng J Med. 2021;385(4):320–9.

Butt AA, Omer SB, Yan P, Shaikh OS, Mayr FB. SARS-CoV-2 vaccine effectiveness in a high-risk national population in a real-world setting. Ann Intern Med. 2021;1–6.

Nanduri S, Pilishvili T, Derado G, Soe MM, Dollard P, Wu H, et al. Effectiveness of Pfizer-BioNTech and Moderna vaccines in preventing SARS-CoV-2 infection among nursing home residents before and during widespread circulation of the SARS-CoV-2 B.1.617.2 (Delta) variant—National Healthcare Safety Network, March 1–August. MMWR Morb Mortal Wkly Rep. 2021;70(34):1163–6.

Chi WY, Li YD, Huang HC, Chan TEH, Chow SY, Su JH, et al. COVID-19 vaccine update: Vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection. J Biomed Sci. 2022 Oct 15;29(1):82.

Detalles del artículo

Artículos más leídos del mismo autor/a