Etiopatogenia de las drogodependencias: una síntesis explicativa desde una perspectiva epigenética

Contenido principal del artículo

Carlos Arturo Cassiani Miranda
Alexander Blanco Palomino
Yinneth Andrea Arismendy López
Natalia Marcela Socarrás De la hoz

Resumen

El consumo de sustancias con potencial adictivo es un problema relevante de salud. La evidencia científica sugiere que los mecanismos subyacentes que regulan los procesos comportamentales en las adicciones involucran un complejo interjuego entre factores genéticos y ambientales. Por lo tanto, esta revisión narrativa tiene como objetivo aportar un marco de referencia que permita sintetizar la evidencia sobre interacciones genes- ambiente-agente desde la perspectiva de la historia natural de la enfermedad y los estadios del proceso adictivo para: alcohol, nicotina, cannabis, psicoestimulantes y opioides. En esta revisión realizamos una búsqueda exhaustiva de la literatura sin límites de tiempo en PubMed, Ebsco, Lilacs y SciELO, revisando el título y el resumen se seleccionaron artículos originales en humanos o animales que abordaran la etiología de las adiciones según el enfoque metodológico de interacción entre genes y ambiente (G-A), incluyendo artículos en español, inglés y portugués. Los estudios genéticos han revelado el papel crítico de los modificadores epigenéticos (acetilación de las histonas) en mantener la homeóstasis cerebral en condiciones patológicas y enfocarse en las interacciones G-A también permitirá caracterizar subgrupos (basados en los factoresambientales) de alto riesgo para conductas adictivas que pueden ser objeto de intervenciones específicas, por lo que, las estrategias de tratamiento deben englobar una combinación de intervenciones psicosociales con terapia génica que involucren las manipulaciones farmacológicas de las histonas que pueden contribuir a diseñar mejores terapias y tal vez conducir a un manejo más exitoso de las drogodependencias.

Palabras clave:
etiología genes ambiente trastornos relacionados con sustancias epigenómica

Citas

Walker DM, Nestler EJ. Neuroepigenetics and addiction [Internet]. 1st ed. Vol. 148, Handbook of Clinical Neurology. Elsevier; 2018:747-765. Disponible en: http://dx.doi.org/10.1016/B978-0-444 64076-5.00048-X

Vink JM. Genetics of addiction: Future focus on gene × environment interaction? J Stud Alcohol Drugs.2016; 77(5):684–7.

Pascoli V, Terrier J, Hiver A, Lüscher C. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron. 2015; 88(5):1054–66.

Muskiewicz DE, Uhl GR, Hall FS. The role of cell adhesion molecule genes regulating neuroplasticity in addiction. Neural Plast. Hindawi. 2018; 2018:9803764.

Wong CCY, Mill J, Fernandes C. Drugs and addiction: An introduction to epigenetics. Addiction. 2011; 106(3):480–9.

Ferguson LB, Harris RA, Mayfield RD. From gene networks to drugs: Systems pharmacology approaches for AUD. Psychopharmacology (Berl). Psychopharmacology; 2018; 235(6):1635–62.

Ferguson LB, Ozburn AR, Ponomarev I, Metten P, Reilly M, Crabbe JC, et al. Genome-wide expression profiles drive discovery of novel compounds that reduce binge drinking in mice. Neuropsychopharmacology. 2018; 43:1257–66.

Lax E, Szyf M. The role of DNA methylation in drug addiction: Implications for diagnostic and therapeutics. Prog Mol Biol Transl Sci. 2018; 157:93–104.

Prom-Wormley EC, Ebejer J, Dick DM, Bowers MS. The genetic epidemiology of substance use disorder: A review. Drug Alcohol Depend. 2017; 180:241–59.

Imperio CG, McFalls AJ, Hadad N, Blanco-Berdugo L, Masser DR, Colechio EM, et al. Exposure to environmental enrichment attenuates addiction-like behavior and alters molecular effects of heroin self-administration in rats. Neuropharmacology. 2018; 139:26–40.

Baker M, Lindell SG, Driscoll CA, Zhou Z, Yuan Q, Schwandt ML, et al. Early rearing history influences oxytocin receptor epigenetic regulation in rhesus macaques. Proc Natl Acad Sci. 2017; 114(44):201706206.

Garrison KA, Potenza MN. Neuroimaging and biomarkers in addiction treatment. Curr Psychiatry Rep. 2014; 16(12):10.1007/s11920-014-0513-5.

Luijten M, Schellekens AF, Kühn S, Machielse MWJ, Sescousse G. Disruption of reward processing in addiction. JAMA Psychiatry. 2017; 74(4):387–98.

Dick DM. The genetics of addiction: Where do we go from here?. J Stud Alcohol Drugs. 2016; 77(5):673–5.

Ajonijebu DC, Abboussi O, Russell VA, Mabandla MV, Daniels WMU. Epigenetics: A link between addiction and social environment. Cell Mol Life Sci. 2017; 74(15):2735–47.

Seglem KB, Waaktaar T, Ask H, Torgersen S. Sex differences in genetic and environmental contributions to alcohol consumption from early adolescence to young adulthood. Addiction. 2016; 111(7):1188–95.

Meyers JL, Salvatore JE, Vuoksimaa E, Korhonen T, Pulkkinen L, Rose RJ, et al. Genetic influences on alcohol use behaviors have diverging developmental trajectories: A prospective study among male and female twins. Alcohol Clin Exp Res. 2014; 38(11):2869–77.

Ouzir M, Errami M. Etiological theories of addiction: A comprehensive update on neurobiological, genetic and behavioural vulnerability. Pharmacol Biochem Behav. 2016; 148:59–68.

Cuadrado I. Genética de las adicciones. Adicciones. 2008; 20(2):103–9.

Cariaga-Martínez AE, Gutiérrez KJ, Alelú-Paz R. The vast complexity of the epigenetic landscape during neurodevelopment: An open frame to understanding brain function. Int J Mol Sci. 2018; 19(5):1333.

Vassoler FM, Sadri-Vakili G. Mechanisms of transgenerational inheritance of addictive-like behaviors. Neuroscience. 2014; 264:198–206.

Latvala A, Kuja-Halkola R, D’Onofrio BM, Larsson H, Lichtenstein P. Cognitive ability and risk for substance misuse in men: Genetic and environmental correlations in a longitudinal nationwide family study. Addiction. 2016; 111(10):1814–22.

Verweij KJH, Creemers HE, Korhonen T, Latvala A, Dick DM, Rose RJ, et al. Role of overlapping genetic and environmental factors in the relationship between early adolescent conduct problems and substance use in young adulthood. Addiction. 2016; 111(6):1036–45.

Olsson CA, Moyzis RK, Williamson E, Ellis JA, Parkinson-Bates M, Patton GC, et al. Geneenvironment interaction in problematic substance use: Interaction between DRD4 and insecure attachments. Addict Biol. 2013; 18(4):717–26.

Shields PG, Bowman ED, Caporaso NE, Audrain J, Boyd NR. Dopamine D4 receptors and the risk of cigarette smoking in African-Americans and Caucasians. Cancer Epidemiol Biomarkers Prev. 1998; 7(6):453–8.

Laucht M, Becker K, Blomeyer D, Schmidt MH. Novelty seeking involved in mediating the association between the dopamine D4 receptor gene exon III polymorphism and heavy drinking in male adolescents: Results from a high-risk community sample. Biol Psychiatry. 2007; 61(1):87–92.

Salvatore JE, Aliev F, Edwards AC, Evans DM, Macleod J, Hickman M, et al. Polygenic scores predict alcohol problems in an independent sample and show moderation by the environment. Genes (Basel). 2014; 5(2):330–46.

Zhang H GJ. Review: DNA methylation and alcohol use disorders: Progress and challenges. Am J Addict. 2017; 26(5):502–15.

Wall TL, Luczak SE, Hiller-Sturmhöfel S. Biology, genetics, and environment. Alcohol Res. 2016; 38(1):59–68.

Yokoyama A, Kamada Y, Imazeki H, Hayashi E, Murata S. Effects of ADH1B and ALDH2 genetic polymorphisms on alcohol elimination rates and salivary acetaldehyde levels in intoxicated japanese alcoholic men. Alcohol Clin Exp Res. 2016; 40(6):1241–50.

Matsushita S, Higuchi S. Review: Use of Asian samples in genetic research of alcohol use disorders: Genetic variation of alcohol metabolizing enzymes and the effects of acetaldehyde. Am J Addict. 2017; 26:469–76.

Irons DE, Iacono WG, Oetting WS. Developmental trajectory and environmental moderation of the effect of ALDH2 polymorphism on alcohol use. Alcojol Clin Exp Res. 2012; 36(11):1882–91.

Altink ME, Arias-Vásquez A, Franke B, Slaats DIE, Buschgens CJM, Rommelse NNJ, et al. An ADH1B variant and peer drinking in progression to adolescent drinking milestones: Evidence of a gene-by-environment interaction. Alcohol Clin Exp Res. 2014; 38(10):2541–2449.

Ting TT, Huang SY, Chen KH, Tseng CI, Lin KM, Chen CY, et al. Effects of genetic variants of ADH1B and ALDH2 and social network on continued alcohol drinking among Young adolescents in Taiwan. Drug Alcohol Depend. 2015;147(155):38–45.

Young-Wolff KC, Enoch M, Prescott CA. The influence of gene – environment interactions on alcohol consumption and alcohol use disorders: A comprehensive review. Clin Psychol Rev. 2011; 31(5):800–16.

Ducci F, Enoch M, Hodgkinson C, Xu K, Catena M, Robin RW, et al. Interaction between a functional MAOA locus and childhood sexual abuse predicts alcoholism and antisocial personality disorder in adult women. Mol Psychiatry. 2008; 13:334–47.

Duncan L, Keller MC. A critical review of the first 10 years of candidate gene-by- environment interaction research in psychiatry laramie. Am J Psy. 2011; 168(10):1041–9.

Meyers JL, Shmulewitz D, Wall MM, Keyes KM, Aharonovich E, Spivak B, et al. Childhood adversity moderates the effect of ADH1B on risk for alcohol-related phenotypes in Jewish Israeli drinkers. Addict Biol. 2015; 20(1):205–14.

Schellekens AFA, Franke B, Ellenbroek B, Cools A, De Jong CAJ, Buitelaar JK, et al. COMT Val158Met modulates the effect of childhood adverse experiences on the risk of alcohol dependence. Addict Biol. 2013; 18(2):344–56.

Ray LA, Sehl M, Bujarski S, Hutchison K, Blaine S EM. The CRHR1 gene, trauma exposure, and alcoholism risk: A test of G × E effects. Genes Brain Behav. 2013; 12(4):361–9.

Creswell KG, Sayette MA, Manuck SB, Ferrell RE, Hill SY, Dimoff JD. DRD4 polymorphism moderates the effect of alcohol consumption on social bonding. Plos One. 2012; 7(2):1–9.

Larsen H, Zwaluw CS Van Der, Overbeek G, Granic I, Franke B, Engels RCME. A Variablenumber- of-tandem-repeats polymorphism in the Dopamine D4 Receptor gene affects social adaptation of alcohol use: Investigation of a gene-environment interaction. Psychol Sci. 2010; 21(8):1064–8.

Park A, Sher KJ, Heath AC. Interaction between the DRD4 VNTR polymorphism and proximal and distal environments in alcohol dependence during emerging and young adulthood. J Abnorm Psychol. 2012; 120(3):585–95.

Koller G, Zill P, Rujescu D, Ridinger M, Pogarell O, Fehr C, et al. Possible association between OPRM1 genetic variance at the 118 locus and alcohol dependence in a large treatment sample: Relationship to alcohol dependence symptoms. Alcohol Clin Exp Res. 2012; 36(7):1230–6.

Chen D, Liu L, Xiao Y, Peng Y, Yang C, Wang Z. Ethnic-specific meta-analyses of association between the OPRM1 A118G polymorphism and alcohol dependence among Asians and Caucasians. Drug Alcohol Depend. 2012; 123(1–3):1–6.

Pfeifer P, Sariyar M, Eggermann T, Zerres K, Vernaleken I, Tüscher O, et al. Alcohol consumption in healthy OPRM1 G allele carriers and its association with impulsive behavior. Alcohol Alcohol. 2015;50(4):379–84.

Miranda Jr R, Reynolds E, Ray L, Justus A, Knopik VS, Mcgeary J, et al. Preliminary evidence for a gene-environment interaction in predicting alcohol use disorders in adolescents. Alcohol Clin Exp Res. 2013; 37(2):325–31.

Kim J, Park A, Glatt SJ, Eckert TL, Vanable PA, Scott-Sheldon LAJ, et al. Interaction effects between the 5-hydroxy tryptamine transporter-linked polymorphic region (5-HTTLPR) genotype and family conflict on adolescent alcohol use and misuse. Addiction. 2015; 110(2):289–99.

Perreau-Lenz S, Spanagel R. Clock genes×stress×reward interactions in alcohol and substance use disorders. Alcohol. 2015; 49(4): 351–7.

Dong L, Bilbao A, Laucht M, Henriksson R, Yakovleva T, Ridinger M, et al. Effects of the circadian rhythm gene period 1 (Per1) on psychosocial stress-induced alcohol drinking. Am J Psychiatry. 2011; 168(10):1090–8.

Czéh B, Welt T, Fischer AK, Erhardt A, Schmitt W, Müller MB, et al. Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: Effects on stress hormone levels and adult hippocampal neurogenesis. Biol Psychiatry. 2002; 52(11):1057–65.

Spanagel R, Noori HR, Heilig M. Stress and alcohol interactions: Animal studies and clinical significance. Trends Neurosci. 2014; 37(4):219–27.

Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC, et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med. 2005; 11(1):35–42.

Blomeyer D, Buchmann AF, Lascorz J, Zimmermann US, Esser G, Desrivieres S, et al. Association of PER2 genotype and stressful life events with alcohol drinking in young adults. Plos One. 2013; 8(3):1–7.

Cope LM, Munier EC, Trucco EM, Hardee JE, Zucker RA, Heitzeg MM, et al. Effects of the serotonin transporter gene, sensitivity of response to alcohol, and parental monitoring on risk for problem alcohol use. Alcohol. 2017; 59:7–16.

Al Mansouri S, Ojha S, Al Maamari E, Al Ameri M, Nurulain SM. The cannabinoid receptor 2 agonist , β -caryophyllene , reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice. Pharmacol Biochem Behav. 2014; 124:260–8.

Ortega-Álvaro A, Ternianov A, Aracil-Fernández A, Navarrete F, García-Gutiérrez MS, Manzanares J. Role of cannabinoid CB 2 receptor in the reinforcing actions of ethanol. Addict Biol. 2015; 20(1):43–55.

Pradier B, Erxlebe E, Markert A, Rácz I. Interaction of cannabinoid receptor 2 and social environment modulates chronic alcohol consumption. Behav Brain Res. 2015; 287:163–71.

Kaprio J. Genetic epidemiology of smoking behavior and nicotine dependence. J Chronic Obstr Pulm Dis. 2009; 6(4):304–6.

Chen X, Chen J, Williamson VS, An SS, Hettema JM, Aggen SH, et al. Variants in nicotinic acetylcholine receptors α5 and α3 increase risks to nicotine dependence. Am J Med Genet. 2009; 150(7):926–33.

Meyers JL, Cerdá M, Galea S, Keyes KM, Aiello AE, Uddin M, et al. Interaction between polygenic risk for cigarette use and environmental exposures in the Detroit neighborhood health study. Transl Psychiatry. 2013; 3(3(8):e290–0.

Csala I, Egervari L, Dome P, Faludi G, Dome B, Lazary J. The possible role of maternal bonding style and CHRNB2 gene polymorphisms in nicotine dependence and related depressive phenotype. Prog Neuro-Psychopharmacology Biol Psychiatry. 2015; 59:84–90.

Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ, College M. Endocannabinoid signaling negatively modulates stress- induced activation of the hypothalamic-pituitaryadrenal axis. Endocrinology. 2004; 145(12):5431–8.

Gunduz-Cinar O, Hill MN, McEwen BS. Amygdala FAAH and anandamide: Mediating protection and recovery from stress. Trends Pharmacol Sci. 2013; 34(11):637–44.

Duncan AE, Sartor CE, Scherrer JF, Julia D, Heath AC, Nelson EC, et al. The association between cannabis abuse and dependence and childhood physical and sexual abuse: Evidence from an offspring of twins design: Cannabis use disorder and child abuse. Addiction. 2008; 103(6):990–7.

Lee TTY, Hill MN. Age of stress exposure modulates the immediate and sustained effects of repeated stress on corticolimbic cannabinoid CB₁ receptor binding in male rats. Neuroscience. 2013; 249:106–14.

Reich CG, Mihalik GR, Iskander AN, Seckler JC, Weiss MS. Adolescent chronic mild stress alters hippocampal CB1 receptor-mediated excitatory neurotransmission and plasticity. Neuroscience. 2013; 253:444–54.

Carey CE, Zhang B, Conley ED, Degenhardt L, Heath AC, Martin NG, et al. Monoacylglycerol lipase (MGLL) polymorphism rs604300 interacts with childhood adversity to predict cannabis dependence symptoms and amygdala habituation: Evidence from an endocannabinoid system-level analysis. J Abnorm Psychol. 2015; 124(4):860–77.

Agrawal A, Nelson EC, Littlefield AK, Bucholz KK, Henders AK, Madden PAF, et al. Cannabinoid receptor genotype moderation of the effects of childhood physical abuse on anhedonia and depression. Arch Gen. 2012; 69(7):732–40.

Gunduz-Cinar O, MacPherson KP, Cinar R, Gamble-George J, Sugden K, Williams B, et al. Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol Psychiatry. 2013; 18(7):813–23.

Patel S, Kingsley PJ, Mackie K, Marnett LJ, Winder DG. Repeated homotypic stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid signaling at inhibitory synapses in basolateral amygdala. Neuropsychopharmacology. 2009; 34(13):2699–709.

Rovaris DL, Mota NR, Callegari-Jacques SM, Henrique C, Bau D. Approaching “phantom heritability” in psychiatry by hypothesis-driven gene–gene interactions. Front Hum Neurosci. 2013; 7:1–3.

Knaap LJ Van Der, Riese H, Hudziak JJ, Verbiest M, Verhulst FC, Oldehinkel AJ, et al. Glucocorticoid receptor gene (NR3C1) methylation following stressful events between birth and adolescence. The TRAILS study. Transl Psychiatry. 2014; 4(4):e381-7.

Lian Y, Xiao J, Wang Q, Ning L, Guan S, Ge H, et al. The relationship between glucocorticoid receptor polymorphisms, stressful life events, social support, and post-traumatic stress disorder. BMC Psychiatry. 2014; 14(1):1–10.

Rovaris DL, Mota NR, Azeredo LA, Cupertino RB. MR and GR functional SNPs may modulate tobacco smoking susceptibility. J Neural Transm. 2013; 120(10):1499–505.

Rovaris DL, Mota NR, Bertuzzi GP, Aroche AP, Pezzi JC, Viola TW, et al. Corticosteroid receptor genes and childhood neglect influence susceptibility to crack/cocaine addiction and response to detoxification treatment. J Psychiatr Res. 2015; 68:83–90.

Megan M, Mcrae-clark AL, Back SE, Desantis SM, Baker NL, Spratt EG, et al. Influence of cocaine dependence and early life stress on pituitary—adrenal axis responses to CRH and the Trier social stressor. Psychoneuroendocrinology. 2010; 35(10):1492–500.

Laucht M, Skowronek MH, Becker K, Schmidt MH, Esser G, Schulze TG. Interacting effects of the dopamine transporter gene and psychosocial adversity on attention-deficit/hyperactivity disorder symptoms among 15-year-olds from a high-risk community sample. Arch Gen Psychiatry. 2007; 64(5):585–590.

Bendesky A, Tsunozaki M, Rockman MV, Kruglyak L. Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature. 2011; 472(7343):313–318.

Moyer RA, Wang D, Papp AC, Smith RM, Duque L, Mash DC, et al. Intronic polymorphisms affecting alternative splicing of human dopamine d2 receptor are associated with cocaine abuse. Neuropsychopharmacology. 2011; 36(4):753–62.

Sullivan D, Pinsonneault JK, Papp AC, Zhu H, Lemeshow S, Mash DC, et al. Dopamine transporter DAT and receptor DRD2 variants affect risk of lethal cocaine abuse: a gene–gene–environment interaction. Transl Psychiatry. 2013; 3(1):e222-8.

Zhou Y, Michelhaugh SK, Schmidt CJ, Liu JS, Bannon MJ. Ventral midbrain correlation between genetic variation and expression of the dopamine transporter gene in cocaine-abusing versus non-abusing subjects. Addict Biol. 2014; 19(1):122–31.

Havranek MM, Vonmoos M, Müller CP, Büetiger JR, Tasiudi E, Hulka LM, et al. Serotonin transporter and tryptophan hydroxylase gene variations mediate working memory deficits of cocaine users. Neuropsychopharmacology. 2015; 40(13):2929–37.

Yetnikoff L, Eng C, Benning S, Flores C. Netrin-1 receptor in the ventral tegmental area is required for sensitization to amphetamine. Eur J Neurosci. 2010; 31(7):1292–302.

Yetnikoff L, Flores C. Regulation of netrin-1 receptors by amphetamine in the adult brain. Neuroscience. 2007; 150(4):764–73.

Manitt C, Nikolakopoulou AM, Almario DR, Nguyen SA, Cohen-Cory S. Netrin participates in the development of retinotectal synaptic connectivity by modulating axon arborization and synapse formation in the developing brain. J Neurosci. 2009; 29(36):11065–77.

Yetnikoff L, Almey A. Abolition of the behavioral phenotype of adult netrin-1 receptor deficient mice by exposure to amphetamine during the juvenile period. Psychopharmacology (Berl). 2011; 217(4):505–14.

Yetnikoff L, Pokinko M. Adolescence: A time of transition for the phenotype of dcc heterozygous mice. Psychopharmacology (Berl). 2014; 231(8):1705–14.

Simpson J, Kelly JP. The impact of environmental enrichment in laboratory rats—Behavioural and neurochemical aspects. Behav Brain Res. 2011; 222(1):246–64.

Stairs DJ, Bardo MT. Neurobehavioral effects of environmental enrichment and drug abuse vulnerability. Pharmacol Biochem Behav. 2009; 92(3):377–82.

Ostrander MM, Badiani A, Day HE, Norton CS, Watson SJ, Akil H RT. Environmental context and drug history modulate amphetamine-induced c-fos mRNA expression in the basal ganglia, central extended amygdala, and associated limbic forebrain. Neuroscience. 2003; 120(2):551–71.

Uslaner J, Badiani A, Day HEW, Watson SJ, Akil H, Robinson TE. Environmental context modulates the ability of cocaine and amphetamine to induce c-fos mRNA expression in the neocortex, caudate nucleus, and nucleus accumbens. Brain Res. 2001; 920(1–2):106–16.

Gill MJ, Weiss ML, Cain ME. Effects of differential rearing on amphetamine-induced c-fos expression in rats. Drug Alcohol Depend. 2014; 145:231–4.

Arndt DL, Arnold JC, Cain ME. The effects of mGluR2/3 activation on acute and repeated amphetamine-induced locomotor activity in differentially reared male rats. Exp Clin Psychopharmacol. 2014; 22(3):257–65.

Franklin TB, Russig H, Weiss IC, Gräff J, Linder N, Michalon A, et al. Epigenetic transmisión of the impact of early stress across generations. Biol Psychiatry. 2010; 68(5):408–15.

Morel LJ, Giros B. Adolescent exposure to chronic delta-9-tetrahydrocannabinol blocks opiate dependence in maternally deprived rats. Neuropsychopharmacology. 2009; 34(11):2469–76.

Vazquez V, Giros B, Dagué V. Maternal deprivation specifically enhances vulnerability to opiate dependence. Behav Pharmacol. 2006; 17(8):715–24.

Zhang T, Hellstrom IC, Bagot RC, Wen X, Diorio J, Meaney MJ. Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus. J Neurosci. 2010; 30(39):13130–7.

Tesone-Coelho C, Morel LJ, Bhatt J, Estevez L, Naudon L, Giros B, et al. Vulnerability to opiate intake in maternally deprived rats: Implication of MeCP2 and of histone acetylation. Addict Biol. 2015; 20(1):120–31.

Nalivaeva NN, Belyaev ND, Turner AJ. Sodium valproate: An old drug with new roles. Trends Pharmacol Sci. 2009; 30(1):509–14.

Bland ST, Hutchinson MR, Maier SF, Watkins LR, Johnson KW. The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. Brain Behav Immun. 2009; 23(4):492–7.

Narita M, Suzuki M, Kuzumaki N, Miyatake M, Suzuki T. Implication of activated astrocytes in the development of drug dependence differences between methamphetamine and morphine. Ann NY Acad Sci. 2008; 1141:96–104.

Schwarz JM, Hutchinson MR. Early-life experience decreases drug-induced reinstatement of morphine cpp in adulthood via microglial-specific epigenetic programming of antiinflammatory IL-10 expression. J Neurosci. 2011; 31(49):17835–47.

Shih RA, Parast L, Pedersen ER, Troxel WM, Tucker JS, Miles JNV, et al. Individual, peer, and family factor modification of neighborhood-level effects on adolescent alcohol, cigarette, e-cigarette, and marijuana use. Drug Alcohol Depend. 2017; 180:76–85.

Roberto P, Tomaz X, Santos JR, Scholz J, Abe TO, Gaya PV, et al. Cholinergic receptor nicotinic alpha 5 subunit polymorphisms are associated with smoking cessation success in women. BMC Med Genet. 2018; 19(1):1–8.

Hutchinson MR, Lewis SS, Coats BD, Skyba DA, Crysdale NY, Berkelhammer DL, et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun. 2009; 23(2):240–50.

Qiu X, Xiao X, Li N, Li Y. Histone deacetylases inhibitors ( HDACis ) as novel therapeutic application in various clinical diseases. Prog Neuropsychopharmacol Biol Psychiatry. 2017; 72:60–72.

Renthal W, Maze I, Krishnan V, Covington HE, Xiao G, Kumar A, et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron. 2007; 56(3):517–29.

Mcquown SC, Wood MA. Epigenetic regulation in substance use disorders. Curr Psychiatry Rep. 2010; 12(2):145–53.

Bonoiu AC, Mahajan SD, Ding H, Roy I, Yong K, Kumar R, et al. Nanotechnology approach for drug addiction therapy: Gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc Natl Acad Sci. 2009; 106(14):5546–50.

Andersen AM, Dogan MV, Beach SRH, Philibert RA. Current and future prospects for epigenetic biomarkers of substance use disorders. Genes (Basel). 2015; 6(4):991–1022.

Cecil CA, Walton E. Epigenetics of addiction: Current knowledge, challenges, and future directions. J Stud Alcohol Drugs. 2016; 77(5):688–691.

Egervari G, Ciccocioppo R, Jentsch JD, Hurd YL. Shaping vulnerability to addiction–the contribution of behavior, neural circuits and molecular mechanisms. Neurosci Biobehav Rev. 2018; 85:117–25.

Chen L, Baker TB, Jorenby D, Piper M, Saccone N, Johnson E, et al. Genetic variation (CHRNA5), medication (combination nicotine replacement therapy vs. varenicline), and smoking cessation. Drug Alcohol Depend. 2015; 154:278–82.

Detalles del artículo

Biografía del autor/a

Carlos Arturo Cassiani Miranda, Universidad de Santander

Programa de Medicina, Facultad de Ciencias de la Salud, Universidad de Santander (UDES). Santander, Colombia.

Alexander Blanco Palomino, Universidad de Santander

Programa de Medicina, Facultad de Ciencias de la Salud, Universidad de Santander (UDES). Santander, Colombia.

Yinneth Andrea Arismendy López, Universidad de Santander

Programa de Medicina, Facultad de Ciencias de la Salud, Universidad de Santander (UDES). Santander, Colombia.

Natalia Marcela Socarrás De la hoz, Universidad de Santander

Programa Psiquiatría, Facultad de Medicina, Universidad Nacional de Colombia. Bogotá, Colombia.