Modelos de predicción de riesgo cardiovascular
Contenido principal del artículo
Resumen
La enfermedad cardiovascular es la principal causa de morbi-mortalidad en el mundo. El desarrollo de la misma se origina en la presencia de múltiples factores de riesgo a los que se ve expuesta la población actualmente. La prevención de su aparición se basa en gran medida en la identificación y control de estos factores de riesgo. De esta manera se busca impactar en el curso clínico o en la historia natural de la enfermedad de acuerdo con que se ha presentado o no en un individuo específico. Los modelos de riesgo cardiovascular son una de las aproximaciones utilizadas para evaluar este pronóstico de este tipo de problemas de salud. En ellos se combinan matemáticamente múltiples puntajes de riesgo para el desarrollo de la enfermedad cardiovascular. Estos marcadores varían en su valor de estimación de una escala a otra, y todo depende de la población en la que haya sido creada, es por esto mismo que para la aplicación de una escala en una población diferente a la de su creación se debe validar externamente, ya que esto previene sobreestimaciones o subestimaciones del riesgo cardiovascular.
Citas
Ma J, Ward EM, Siegel RL, Jemal A. Temporal trends in mortality in the United States, 1969-2013. JAMA 2015; 314(16):1731–1739.
Kottke TE, Giles WH, Capewell S. Explaining the decrease in U.S. deaths from coronary disease, N Engl J Med 2007; 356(23):2388-2398.
Murray CJL, Barber RM, Foreman KJ, Ozgoren AA, Abd-Allah F, Abera SF, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: Quantifying the epidemiological transition. Lancet 2015; 386(10009):2145–2191.
Collaborators GB of DS 2013. Europe PMC Funders Group Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990 – 2013 : A systematic analysis for the Global Burden of Disease Stud. Lancet 2015; 386(9995):743–800.
O’Donnell CJ, Elosua R. Factores de riesgo cardiovascular. Perspectivas derivadas del Framingham Heart Study. Rev Española Cardiol 2008; 61(3):299–310.
Fletcher RH, Fletcher SW, Wagner EH. Clinical Epidemiology the Essentials. Third Edit. Saterfield TS, editor. 1996; p. 94-136.
GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990 – 2013 : A systematic analysis for the Global Burden of Disease Stu. 2015; 6736(15):1990–2013.
Moons KG, Royston P, Vergouwe Y, Grobbee DE, Altman DG. Prognosis and prognostic research: What, why, and how? BMJ Br Med J 2009; 338:1317–1320.
Mahmooda SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular diseases: A historical perspective. Lancet. 2014; 383(9921):1933–1945.
Khot U, Khot M, Bajzer C, Sapp S, EM O, Brener S. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA 2003; 290(7):898–904.
Stone PA, Kazil J. The relationships between serum C-reactive protein level and risk and progression of coronary and carotid atherosclerosis. Semin Vasc Surg 2014; 27(3-4):138–142.
Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, et al. 2013 ACC/ AHA guideline on the assessment of cardiovascular risk: A report of the American college of cardiology/American heart association task force on practice guidelines. Circulation 2014; 129(25 SUPPL. 1).
Huxley R, Mendis S, Zheleznyakov E, Reddy S, Chan J. Body mass index, waist circumference and waist: Hip ratio as predictors of cardiovascular risk—a review of the literature. Eur J Clin Nutr 2009; 64(1):16–22.
Lee CMY, Huxley RR, Wildman RP, Woodward M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: A meta-analysis. J Clin Epidemiol 2008; 61(7):646–653.
Zaninotto P, Mindel J, Hirani V. Prevalence of cardiovascular risk factors among ethnic groups: Results from the Health Surveys for England. Atherosclerosis 2007; 195:e48–e57.
Forouhi NG, Sattar N. CVD risk factors and ethnicity—A homogeneous relationship? Atheroscler Suppl 2006; 7:11–19.
Kelleher C, Lynch J, Daly L, Harper S, Fitz-simon N, Bimpeh Y, et al. The “‘Americanisation’” of migrants: Evidence for the contribution of ethnicity, social deprivation, lifestyle and life-course processes to the mid-20th century Coronary Heart Disease epidemic in the US. Soc Sci Med 2006; 63:465–484.
Thanassoulis G, Peloso GM, Pencina MJ, Sr RBDA, Hwang S, Christopher J. A genetic risk scoreis associated with incident cardiovascular disease and coronary artery calcium - The Framingham heart study. Circ Cardiovasc Genet 2013; 5(1):113–121.
Damen JAAG, Hooft L, Schuit E, Debray TPA, Collins GS, Tzoulaki I, et al. Prediction models for cardiovascular disease risk in the general population: Systematic review. BMJ 2016; i2416.
Collins GS, de Groot J, Dutton S, Omar O, Shanyinde M, Tajar A, et al. External validation of multivariable prediction models: A systematic review of methodological conduct and reporting. BMC Med Res Methodol. BMC 2014; 14(1):40.
Preiss D, Kristensen SL. The new pooled cohort equations risk calculator. Can J Cardiol 2015; 31(5):613–619.
Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97(18):1837–1847.
Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 2002; 105(7):900.
Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. Eur Heart J 2003; 24(11):987–1003.
Ridker P, Buring J, Rifai N. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women. JAMA 2007; 297:611-619.
Ridker PM, Paynter NP, Rifai N, Gaziano M, Cook NR. C-Reactive Protein and parental history improve global cardiovascular risk prediction: The Reynolds Risk Score for men. Circulation 2009; 118(22):2243–2251.
Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: Prospective open cohort study. BMJ 2007; 335(7611):136.
Hippisley-Cox J, Coupland C, Robson J, Sheikh A, Brindle P. Predicting cardiovascular risk in England and Wales: Prospective derivation and validation of Qrisk2. BMJ 2009; 338:880–880.
McGorrian C, Yusuf S, Islam S, Jung H, Rangarajan S, Avezum A, et al. Estimating modifiable coronary heart disease risk in multiple regions of the world: The Interheart Modifiable Risk Score. Eur Heart J 2011; 32(5):581–590.
Woodward M, Brindle P, Tunstall-Pedoe H. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart 2007; 93(2):172–176.
Keaney JF, Curfman GD, Jarcho J. A pragmatic view of the New Cholesterol Treatment Guidelines. N Engl J Med. 2013; 370(3):275-278.
Muñoz OM, Rodríguez NI, Ruiz Á, Rondón M. Validación de los modelos de predicción de Framingham y Procam como estimadores del riesgo cardiovascular en una población colombiana. Rev Colomb Cardiol 2014;21(4):202–212.
Guía de práctica clínica tratamiento y seguimiento de las dislipidemias en la población mayor de 18 años. Minist Salud y protección Soc - Colciencias 2014;(27): 1–66.
Khanji MY. Cardiovascular risk assessment: A systematic review of guidelines. Ann Intern Med 2016; 165:713–722.